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The method of lines is applied to the two-dimensional nonlinear water wave generation 
resulting from the abrupt acceleration from rest to constant speed of a pressure distribution on 
the surface of initially calm water. The surface pressure distribution can be viewed as 
modeling the air cushion pressure of a surface effect ship. Steady state at the craft is achieved 
for all cases computed, most of which are highly nonlinear and which exhibit sharp 
downstream wave crests that approach the limiting sharpness of the Stokes wave for steady 
irrotational gravity waves. Computations show pronounced sharpening of wave crests, 
broadening of wave troughs, and shortening of wavelengths compared to linear theory. Wave 
resistance, rates of work, and energy are computed. Computer time is saved by applying the 
method of lines in a local neighborhood of the free surface in combination with a standard 
Laplace solver below. Results are presented. 

1. INTRODUCTION 

Various methods [ 1,2] have been used in the numerical computation of nonlinear 
water waves. These methods, including both transient and steady state modeling, 
successfully calculate waves with moderately steep slopes but encounter inaccuracy 
or, in the transient case, instability when the wave slopes become very steep. The 
objective of the present study was to calculate very steep waves, possibly up to the 
point of breaking, using the method of lines. 

The method of lines involves discretization of the governing partial differential 
equation except in one dependent variable. An example of a physical application is 
given in [3]. In this paper the method of lines is applied as used by G. H. Meyer 
[4,5], who has applied it to several physical problems (not water wave problems, 
however) involving a nonlinear free boundary, that is, a boundary whose shape is not 
known in advance and at which a nonlinear boundary condition is applied. Meyer’s 
method resembles a successive line overrelaxation iteration procedure. In such a 
procedure all quantities on a line (the coordinate direction with respect to which 
derivatives are not discretized and which intersects the free surface) are computed 
(including free surface values) given the latest values on adjacent lines. A successive 
Gauss-Seidel line iteration procedure was used in this paper and worked nicely. In 
this paper the method of lines is applied only on a grid imbedding the free surface. 
This imbedding grid solution (on and below the free surface) is made to interact in a 
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convergent manner with the solution of Laplace’s equation (obtained by sucessive 
point overrelaxation in this paper) on a much larger grid below and slightly 
overlapping the imbedding grid. 

The method of lines has two main numerical components: (1) the solution of a 
nonlinear ordinary differential equation, and (2) the solution of a small nonlinear 
system of simultaneous equations (on the order of 2 or 3). As mentioned in [4], 
recent advances in the solution to each component make the method of lines 
attractive. It is easily programmable and extendable to three dimensions compared to 
other physical space methods. However, the method has a high arithmetic operation 
count and is therefore computationally slower than most other methods. 

The two-dimensional moving surface pressure distribution problem, which has been 
studied by von Kerczek and Salvesen [6] and also by Haussling and Van Eseltine 
[2], is considered a test problem. The surface pressure distribution can be viewed as 
simulating the air cushion pressure of a surface effect ship. In this paper a transient 
approach to steady state at the craft is used since it seems the most natural way to 
compute two- and three-dimensional nonlinear free surface flows (i.e., one computes 
the nonlinear free surface until a steady state is achieved at the craft well before 
waves reach the downstream computational boundary). The transient approach has 
been used [7] to compute 3-D linear steady state ship waves. This approach removes 
the difficulty of dealing with the nonlinear free surface downstream boundary 
condition which is not known. Von Kerckzek and Salvesen [ 1 ] used a steady state 2- 
D method which uses a stream function formulation and is therefore not applicable to 
3-D problems. In [2] a transient approach was used. For truly time dependent 
problems, obviously a transient approach is necessary. 

Although a body is not present in the moving surface pressure distribution 
problem, problems with bodies should offer no additional difliculties for the method 
of lines since the body boundary condition is much simpler than the nonlinear free 
surface condition which is the chief concern in this paper. Meyer [4,5] has 
successfully obtained solutions for nonlinear free boundary problems (not involving 
water waves) with bodies in polar coordinates. 

\ 

Numerical results obtained in this paper are compared with linear analytic 
solutions, with the limiting Stokes solution [8] for steady irrotational gravity waves 
and with features predicted by the perturbation analysis of Salvesen [9] for nonlinear 
water waves. The numerical results show pronounced sharpening of wave crests, 
broadening of wave troughs, and shortening of the wavelength compared to linear 
theory. In addition, wave resistance and time rates of work and energy are computed. 

In Section 2 of this paper the formulation of the moving surface pressure 
distribution problem is given. This is followed in Section 3 by a description of the 
numerical method employed. In Section 4 results obtained with the numerical method 
are given. Section 5 summarizes conclusions drawn from the results. 
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2. THE 2-D SURFACE PRESSURE DISTRIBUTION PROBLEM 

In a Cartesian coordinate reference frame moving to the left with the surface 
pressure distribution (Fig. la) the following initial boundary value problem is con- 
sidered : 

17t = -vxu + d,) + 0, at Y = rl, (1) 
#t = --q/F? - $, - I(& + 4:) - &/Fr* at Y = r, (2) 

4,x + 4YY = 0 for O<x<L,, -h<y<q, (3) 

4x=0 at x=O,Ll, (4) 

9, = 0 at y = -h, (5) 

at t=O; 0 = 0 everywhere, (6) 

r = -6P, (7) 

with p = sin* [ n(x - x,)], x,(x<x,+l, (8) 

P = 0, x < x0,x > x0 + 1. (9) 

The origin of the Cartesian coordinate reference frame is in the undisturbed free 
surface. It is assumed that the flow is irrotational and that the fluid is incompressible. 
It is also assumed that the surface elevation can be described at any time t by 
specifying y as a single-valued function of x: y = ~(x, t). Equations (1) and (2) are, 
respectively, the kinematic and dynamic boundary conditions at the free surface. 
Initially the pressure distribution is at rest over a motionless fluid and is then 
accelerated impulsively to a constant speed U. The formulation presented here applies 

Y 

I- x 

FIG. la. The computational region in the reference frame fixed to the moving pressure distribution. 
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to this particular problem, but the formulation and numerical method used in this 
paper can easily be extended to handle more general accelerations. The variables have 
been nondimensionalized in Eqs. (1) through (9) as follows, 

(x’, Y’) = ax, Y) I’ = 6 1, 
(10) 

#’ = L u+, P’ = PP, v’ = LtI, 

where primes denote dimensional variables, 4(x, y, t) is the velocity potential relative 
to a nonmoving reference frame, p is pressure, P is the maximum pressure in the 
surface distribution, and L is the length of the surface pressure distribution. The 
dimensionless parameters are Fr = U/G, the Froude number based on L, and 
6 = P/pgL. The gravitational acceleration is denoted by g and p is the constant 
density. The parameter S can be regarded as the ratio of two length scales. The length 
P/pg is the hydrostatic surface displacement caused by the surface pressure P. The 
initial surface elevation in Eq. (7) is the hydrostatic displacement due to the pressure 
disturbance. The parameter 6 is a measure of the strength of the pressure distribution. 
Note that the initial conditions of Eqs. (6) and (7) are equivalent mathematically to 
the relation 

A=0 at t = 0 at y = q. (11) 

Figure lb shows initial surface elevations at t = 0 for five 6’s considered later in this 
paper. The problem represented by Eqs. (1) through (9) can be linearized with 

#I = -4, - q/Fr2 - Gp/Fr2, 
at y=O, (12) 

replacing Eqs. (1) and (2). This linearized problem often provides suficient accuracy 
when wave slopes are small. 

Formulas for the kinetic and potential energies of the fluid, the time rate of work 
performed by the pressure on the fluid, and the wave resistance experienced by the 
pressure to its movement across the fluid are, respectively, 

6 = 0.015 1 

2.0 52 - 2.5 x,, + 1 - 3.6 4.6 5.6 6.6 

x 

FIG lb. Initial surface elevations at t = 0 for 6 = 0.01, 0.0125, 0.015, 0.0175, 0.02. 
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1 
PE=- 

2Fr2 J q2 dx, 

w=$, Mhrl, - $,)l,=,dx~ 

J PLY = rl) vx dx. 

The kinetic and potential energies have been nondimensionalized with respect to 
pL2U2 and the wave resistance by pLU2. The total energy of the field is then 
expressed by E = KE + PE. Energy conservation is represented by the relation 

rir = dE/dt. 

(17) 

It follows from Eqs. (l), (15), and (16) that at steady state 

c, = ci/. (18) 

3. THE NUMERICAL METHOD 

Consider an overlapping grid system as shown in Fig. 2 for the computational 
region of Fig. 1 a. The grid for 0 < x < L , , y, < y < yrn is that used by the method of 
lines. The grid for 0 < x Q L 1, -h < y < y, is that used by a Laplace equation solver 

y--h 
X 

GRID FOR V2# * 0 

‘0 x-L, 

FIG. 2. Overlapping grid system for the computational region, 
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which in this paper was Gauss-Seidel point successive overrelaxation, although a fast 
direct method [lo] cou1.d be used. However, the major part of the computing time is 
used by the method of lines and this is the reason for confining it to the upper grid. 
The solutions on the two overlapping grids are made to interact in a convergent 
iterative process to be described. Note from Fig. 2 that the upper grid extends beyond 
the free surface, this extension being available if needed. Essentially, the grid only up 
to the free surface (as it is generated) is used in the computational process. 

On the upper grid the initial boundary value problem of Eqs. (1) through (9) is 
spatially finite differenced in x only, with second-order central differencing replacing 
derivatives in the x-direction. Briefly, the overall computational scheme for obtaining 
a solution at time level t” + ’ in the computational region of Fig. 2 from a computed 
solution at t” (with time step At = tntl - t”) is as follows. 

Proceeding in the upper grid on the ith iteration pass (i = 1 initially) from the 
upstream end, (x = 0) in Fig. 2, to the downstream end at x = L,, the ith iterate 
solution of Eqs. (1) through (3) (subject to a Dirichlet condition at y,) at each line xj 
(Fig. 3) is solved based on the ith iterate solution at xi-, and the i - 1st iterate 
solution at xj+ i. The solution at t” is taken as the 0th iterate solution. After this ith 
sweep in the upper grid, Eq. (3) is solved (here by Gauss-Seidel successive overrelax- 
ation) in the lower grid subject to Eqs. (4), (5) and a Dirichlet condition at y = y1 
represented by #ti)(xj, y,, t”+ ‘) (all xj), where the superscript (i) refers to the ith 
iteration. This yields at y, the value #(i’(xj, y,, t”+‘) (all xi) as a new Dirichlet 
condition for the upper grid. This completes the ith computational cycle. Before the 
(i + 1)st computational cycle with an (i + 1)st iteration sweep in the upper grid is 
started, the following convergence criteria are applied for all xj: 

l?p’(Xj, t”+‘) - pyxj, t”+‘)l < E,, 

Ig(i)(Xj,yor tn+l)-~(i-l)(Xj,yo,tn+l)l < &*. 
(19) 

If the convergence criteria are satisfied, the ith iterate solution in the entire 
computational region (Fig. 2) is taken as the solution at t”+ ‘. If the convergence 

I I 

I- 
I I I 

I 1 I I I 1 
Y = v, I I I i 

x-o xi-, xj xi+1 x-L, 

FIG. 3. The neighboring grid of the vertical line xj. 
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criteria are not satisfied, the (i + l)st computational cycle and, if necessary, 
additional computational cycles are computed until the convergence criteria are 
satisfied. 

The present computational scheme is a modification of that used by Meyer [4,5], 
who applies the method of lines to entire computational regions. The method of lines 
requires significant computer time, but because the present scheme employs the 
method of lines only in a grid strip containing the free surface, the amount of 
computer time is significantly reduced. 

The following discussion will now be confined to the upper grid and, in particular, 
to the ith iterate solution for time level P+r at the line x = xi as in Fig. 3. 

An implicit time differencing scheme known as Euler’s modified method is used for 
the free surface Eqs. (1) and (2). An implicit scheme has been chosen instead of an 
explicit scheme because in general it is more stable and can use much larger time 
steps. The author is not aware of any explicit time advancement scheme having been 
used successfully in a nonlinear free surface problem. One gets, at the line xi, 

+yxj, t*+ ‘) + tj(Xj, t”) + (At/2)[F;‘; 1 + F,] = 0, (20) 

-,(i’(Xj, Il”‘(Xj, tntl), t”+‘) + ~(Xj, r(~j, t”), t”) + (At/2)[G~~ 1 + G,] = 0, 
(21) 

where F!!i,, Gtj., are 

p’ - - (?p”(Xj+, ) P+’ 
If+1 - ) - q(i)(xj-lT t”+‘)) cl + rtjyxj, p(xj, pt 11, pt 1)) 

2Ax 

+ ~:i’(Xj, I?“‘(Xj, t”+ ‘), t”+ ‘>, (22) 

Gyi, = -$‘)(xj, t*+ ‘)/Fr2 - SplFr2 - #y’(Xj, q”‘(Xj, t”+ ‘), t”+ ‘) 

-f([#$“(Xj, q”‘(Xj, tntl), t”+‘)]2 + [(lf'(Xj, ~cO(xjP fn+‘)T tn+1)12> 
+ @(i)(x. $0(x,, p+l) 

Y J’ 7 ptl)F”) n+l (23) 

with 
qq’(Xj, ?p(Xj, t"+'), t"+ ‘) 

= fGi- “(Xi+, , rp(x,, tn+ I), t n+‘)-d(i)(Xj-l,?(i)(xj,f”+l),tn+’) 
2Ax 

F, and G, are also given by the right sides of Eqs. (22) and (23), respectively, with t” 
replacing t” + r and with all iteration superscripts (i) and (i - 1) removed. An extra 
term ~:i’(Xj, ~“‘(x,, t” + ‘), t”+ ‘) F”,ii, has been added to Glf: r (and the corresponding 
term added to G,), since the local derivative 4, in Eq. (2) has been replaced by a 
substantive derivative approximated by 
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When the ith iterate solution at the line xj, is computed, all dependent variables on 
lines other than x, (such as #‘I, #‘) at x,-, and #l-i), q(‘-‘) at xi+ ,) are known and 
the solution at t” is known on all lines. 

Since the free surface y = ~(x, t) does not ordinarily lie on grid points (x,, yk), the 
terms #(‘-“(x,+ ,, @‘(x,, ?“+I ), t”+ ‘), #o)(xj-, , $‘)(x,, t”+ I), t” + ‘) are expressed as 
linear functions of the unknown @‘(xi, t”+ ‘) (in terms of known values 
,(i-“(Xj+ I) yk, t”+ ‘) nearest the free surface t7”-“(Xj+, , tat’) and known values 
#(i)(x,-, , yk, t”+ ‘) nearest the free surface r]“‘(x,- i , t” + ‘), respectively). 

The unknowns in Eqs. (20) and (21) are therefore @)(x,, t”+‘), @“(xi, q”‘(xj, 
tfl+ I), t” + I), and $t)(xj, qti)(xj, t” + ‘), t”+ I). Another equation is required so that 
these three unknowns may be solved from the resulting system of simultaneous 
nonlinear equations. This additional equation will be supplied from the consideration 
of Laplace’s equation (Eq. (3)). 

Using central differencing for Eq. (3) about a point (xj, yJ on the line x1 gives 

- [(+‘)(xj+,,yk, t”+’ 
> + $'i'(xj-l,yk, t"+')]/(dX)2- (24) 

Since the last term in Eq. (24) is assumed known, one has a simple second-order 
ordinary differential equation for Q 07 at xj for y at successive intervals [yk, yktl]. 
Over each such interval 4 U) has an analytic solution given in terms of a linear 
combination of exponential functions of y plus a linear function of y (if the last term 
in Eq. (24) is replaced by a linear function of y based on assumed known values of 
~(i-“(Xj+ 1) Yk, tn+’ ), #(i’(xj-l, yk, t”+ ‘) at all y = yk). Thus, one could proceed to 
solve Eq. (24) by sweeping upward along the line x = Xj starting at y = y, (Fig. 2) 
where starting conditions for both 4 and 4, (i.e., @-‘)(xj, y,, t”+ ‘), 
4:‘- ‘)(xj, y,, t”+ ‘)) must be given. Solving Eq. (24) in this way would give a solution 
independent of the free surface conditions (Eqs. (20), (21)). Such independence 
cannot be permitted. It is also quite obvious that Eq. (24) cannot be solved by 
sweeping downward from a free surface unknown in advance. What is required is a 
scheme which (1) uncouples the free surface conditions from the integration of the 
ordinary differential equations representing the Laplace equation (3) along lines 
x = xi and (2) calculates a solution which satisfies both the free surface equations 
and Laplace’s equation. 

Following Meyer’s method [4], which fulfills these needs and which is outlined 
here for completeness of the discussion, one considers the Ricatti transformation that 
relate 0 and 4, through auxiliary variables R(x, y), W(x,y): 

#(i’(~j, J’, t”+ ‘) = R(x,, J’) 4:)(X,, Y, t”+ ‘) + w(Xj, Y>* (25) 

(The continuous variable y has replaced the grid ordinate y,. The same will be true of 
Eq. (24) in the following discussion.) Substituting Eq. (25) for $(“(Xj, y, t”+‘) in 
Eq. (24) gives 
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q$(x, ) y, t” + ‘) = (2/(dx)*) R (Xj , y) #‘(Xj 7 Y, f” + ‘1 

a first order differential equation for 6, along the line Xj once R(xj, y), W(Xj, y) are 
known (values on adjacent lines are assumed known). To obtain R and W, Eq. (25) 
is differentiated with respect to y. The resulting equation will be a first order ordinary 
differential equation for W along the line xi (after substituting Eq.(26) for 
&i(xj, y, t” + ‘)) if and only if R satisfies 

Ry(Xj,Y)= 1 - (2/(~X)*)RZ(Xj,Y),R(Xj,Y~)=0. (27) 

The equation for W is 

W,,(X,,Y)=- (2/(d~)*)R(xj,y) W(X,,Y> +R(x,,Y)[~“-‘)(X~+I,Y~‘~+‘) 

+ $(‘)(Xj-1, y, t”+1)]/(AX)2, W(Xj, yo) = #‘i-l)(xjT YO* t”+l)’ (28) 

The initial conditions for R and W in Eqs. (27) and (28), respectively, arise from 
Eq. (25) and the known initial Dirichlet condition for #(i-l)(Xj, yo, t”+ ‘) (obtained 
from the Laplace equation solution on the lower grid (Fig. 2)). 

The computation along the line x, (at consecutive y,J in the upper grid (Figs. 2 and 
3) from y=y, to y=q(i)(~,,f”+l) p roceeds as follows. Given R(Xj, y,) and 
W(xj, yo), one obtains R and W from Eqs. (27) and (28), respectively. Equation (27) 
has an analytical solution for R: 

R(y) = [(A~) e(2)Y*(~-~cd/Ax _ (,,jx)]/[fi+ ,&(~)Y~(Y-YoYAx], (29) 

R is actually independent of xj and is a function of y and the parameters y, and dx. 
Since R is analytically known, the numerical solution to Eq. (28) for W is obtained 
first, with the solution being advanced successively over intervals [yk, yk+ r] in the 
positive y-direction on the line X~ from y, to the first yk beyond the latest known 
iterate value of y = n, which is $-“(x,, f”+‘). The term [$“-“(x,,, , y, f”+ ‘) + 
#(‘J(x~-~, y, P’)] in Eq. (28) (which is known at y = yn, yk+ r for each interval) is 
expressed as a linear function over [ yk, yk+ ,I, based on its values at the endpoints of 
the interval. 

At the unknown free surface y = n(‘)(x,, t”+ ‘), Eq. (25) can be expressed as 

+o(~,, q(O(x,, f”+‘), f’+l)=R(xj, q”‘(x,, t”+‘))#‘(X,, ?f’(Xj, f”+‘h f”+‘) 
+ W(x,, ?yx,, tn+ ‘))* (30) 

R and W can now be expressed as functions of $f)(xI, t”+‘) (W is expressed 
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as a linear function of $“(x. t”+’ ) based on its computed grid values in the 
immediate neighborhood of the free surface). Equation (30) will be the third 
nonlinear equation in addition to Eqs. (20) and (21) with unknowns 
@)(xj, t”+ I), $(i)(xj, q”‘(xj, t”+ ‘), t*+ I), $rr(xj, @‘(xi, t” + ‘), t”+ I). The unknown 
$F’(xj, @)(xj, tntl), t”+‘) can be expressed directly in terms of the unknowns 
rcn(xj, t”+ I), #(i)(xj, @‘(xi, t”+ ‘), t”+‘) from Eq. (20). This expression for 
fy(Xj, q”‘(xi, t=+‘), t”+ ‘) is substituted in Eqs. (21) and (30) and it is these 
two equatrons which are solved simultaneously for tpyx,, t”+ I), 
#ci)(xj, @‘(xj, t”+ I), t”+ I). Newton’s method has been used here. 

The computed value of #r)(xj, @‘(xi, t”+‘), t”+ ‘) serves as a starting condition for 
the numerical solution of Eq. (26) for 0:’ along the line xi. The numerical solution 
advances from y = @‘(x. t”+ ’ 
interval from y = q”‘(x. ‘i’+ ’ 

) to y = y0 along grid points on xj. The first grid 
) to the first fixed grid point just below will be of 

variable size depending ‘on the value of @)(xj, t”’ ‘). The term [$‘i’(xj-, , y, t”+ ‘) + 
~(i-l)(Xj+l,Y, t”+‘)-2W(Xj,y)] in Eq. (26) is expressed as a linear function over 
each interval [ yk, yk+ r ] based on its values at the endpoints of the interval. 

The velocity potential #(i’(xj, y, t”+‘) at grid points along the line xi from 
y = q”)(xj, t”+ ‘) to y = y, is then obtained from Eq. (25). 

The numerical solutions of Eqs. (28) and (26) for W and @,,, respectively, are 
accomplished by using a second order Runge-Kutta method [ 111 (a “predic- 
tor-corrector” method) for each successive grid interval [ y,, yk+ ,I. Given an initial 
condition for the dependent variable at one endpoint of the interval, the dependent 
variable is solved for at the other endpoint of the grid interval and serves as the initial 
condition for the next interval. Solutions are obtained for each successive interval 
[ y,, yk+ ,] since terms (previously discussed) in the right sides of Eqs. (26) and (28) 
have been expressed as linear functions over each such interval. This is especially 
desireable when the free surface lies within the interval [ yk, yk+ ,]. 

When xi = 0 or L, where Eq. (4) applies, or when central differencing for unequal 
intervals about the line xj is applied, Eqs. (20), (21), and (25) through (28) are 
modified but are solved in the same manner. This completes the discussion of the ith 
iterate solution for time level t”+’ at the line xi in the upper grid. 

The Cartesian grid used in this paper for Fig. 2 is defined as follows: Proceeding 
from x = 0, which is considered the line x1, xi is defined as 

xj= (j- l)dx, Ax = 0.085, j = 2, 3,..., 11; 

Xj.Xll + (j- ll)dx, Ax = 0.065, j= 12, 13,..., 21; 

x,=xzl + (j-2l)Ax, Ax = 0.05, j = 22, 23,..., 3 1; 

Xj=XxI + (j-3l)Ax, Ax = 0.04, j = 32, 33,..., 146; 

xi = xId6 + (j - 146) Ax, Ax = 0.05, j= 147, 148,..., 166; 

xi = xle6 + (j - 166) Ax, Ax = 0.0714, j = 167, 168 ,..., 173; 

x,=x~,~ + (j- 173)Ax, Ax = 0.1, j= 174, 175 ,..., 188. 
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Proceeding from y = -h in the positive y-direction, y, is 

y/(=-h+(k- l)dy, Ay = 0.04, k = 2, 3 ,..., 26; 

Yk = Y26 + (k - 26) AY, Ay = 0.03, k = 27, 28 ,..., 31; 

Yk=Y31+ (k-31)4 Ay = 0.02, k = 32, 33 ,..a, 36; 
(32) 

Yk = Y36 + (k - 36) b’, Ay = 0.01, k = 37, 38 ,..., 56. 

With this grid definition, L, = 9.5998, h = 1.35 and y, = 0.1. The values y, = -0.07 
and y, = -0.1 were used in Fig. 2. Note that the symbol y, has a special meaning and 
is not involved in the definition of Eq. (32). In Eqs. (8) and (9), x0 = 2.6 so that the 
pressure distribution of Eq. (8) was located from xi = 46 through xi = 71. The time 
step used was At = 0.03. In Eqs. (19) the values for E, and e2 were E, = .s2 = 0.0002. 

During the computer runs for the cases to be discussed under Results, an 
instability develops in time at the free surface just upstream of the pressure 
distribution. This has been noticed also in previous numerical work on nonlinear 
water wave problems [2]. This situation was controlled in the present study with a 
light application to the free surface in this upstream region of a filtering function due 
to Shapiro [ 131 which removes the shortest wavelength errors. This filtering has been 
used successfully by Longuet-Higgins and Cokelet [ 121 on a breaking wave problem. 
To be precise the second-order filtering function used was 

(33) 

where the subscripts refer to functional evaluations at x~+~, xi* i, xi. After each 
iteration sweep through the computational region, ti”‘(xj, q (Xi, t”+ ‘), t”+ ‘) and 
f+‘)(x. t”+‘) at x. forj= 43 

I’ J 7 44 ,*a*, 51 were replaced as followii) 9 

pyxj, rp(Xj, tn+l), t”+‘) 

t (1 - 0.1 (j - 42)) Jj + 0.1 (j - 42) ,(‘)(xj, $“(xj, t”+ ‘), t”+ ‘), (34) 

,~i~(~j,t”+1)e(1-O.I(j-42))~j+O.l(j-42)~~i~(~j,t”+1), 

where $,, flj are given by the expression for & in Eq. (33), with the functional values 
on the right-hand side of Eq. (33) given respectively by dti’(xj, r,r”‘(xj, t”+ ‘), t”+ ‘) and 
q”‘(xj, t”+‘) atjf 2,jk 1,j. Upstream forj= 1 toj=42 only ~j, r&were used (after 
each iteration sweep) where the free surface is expected to be flat with q = 0. It is to 
be emphasized that filtering was not used anywhere else on the free surface. 

4. RESULTS 

The following seven cases have been computed on the Texas Instruments 
Advanced Scientific Computer at the Naval Research Laboratory, Washington, D.C. : 
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Fr = 0.4, 6 = 0.01,0.0125,0.015,0.0175,0.02, 

Fr = 0.45, 6 = 0.015, 

Fr = 0.35, 6 = 0.0125. 

In discussing the results for these cases, the numerical solutions will be compared 
with the analytic solution for the linearized, steady state version of the free surface 
problem given by Eqs. (1) through (9). This linearized version of the problem is given 
by Eqs. (12) with time derivatives omitted, Eq. (3) applied on a region of infinite 
depth with 4 = 0 at y = -co, and with no surface waves far upstream of the pressure 
distribution given by Eqs. (8) and (9). While numerical solutions for the nonlinear 
problem were computed on the region of Fig. la with a depth h equal to 1.35, it is 
valid to compare these numerical solutions with solutions obtained on regions of 
infinite depth. This is true since a depth of 1.35 is considerably greater than half the 
wavelength for all cases considered (see Stoker [ 141) and therefore bottom effects are 
negligible. 

The analytic solution [6, 151, for 17 for the linearized, steady state problem just 
described is given by 

ds p(s) Re Z{ i(x - s)/Fr*}, (35) 

I I I I 
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FIG. 5. Time sequence of waves generated for Fr = 0.4, S = 0.02. 
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where the complex function I({) is defined in terms of the exponential integral as 

(36) 

where y is Euler’s constant. 
The analytic coefficient of wave resistance C,, defined by Eq. (16) for the 

linearized, steady state problem with finite depth [ 161, is given by 

cs2 
CR = Fr6 

K2(S2 + Q’] 
1 - (h/Fr2) sech2(hK/Fr2) 1 

with 

S 
Q 

= P I fyi (Kx/Fr2) dx, 

where K is the nonzero positive root of K - tanh(hK/Fr2) = 0. Note that 6 appears 
only as a constant factor outside the integral sign in Eq. (35) and that the analytic C, 
of Eq. (37) is a linear function of a2. 

Figure 4 shows waves generated in time for the case Fr = 0.4, 6 = 0.015. This and 
all following figures to be discussed have been computer drawn using the 
Tektronix 4014-l graphics terminal and Calcomp 936 plotter. During each time unit 
the pressure distribution moves upstream (to the left) a distance equal to the length of 
the distribution. The pressure distribution (Eq. (8)), which is applied at the free 
surface in this and all following figures, is shown located at 2.6 <x < 3.6. In Fig. 4 
the development of a wave train downstream is apparent, with a steady state wave 
profile at the pressure distribution at t = 3.6 (the pressure distribution has moved 3.6 
of its lengths upstream to the left). The first wave crest downstream of the pressure 
distribution appears to be at almost steady state at t = 4.2. Note that the numerical 
solution for this and all of the following cases shows the typical nonlinear wave 

FIG. 7. Steepness of first downstream wave crest for Fr = 0.4, 6 = 0.0175, t = 3.3. 
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characteristics: a sharpening of the crests, a broadening of the troughs, and a 
shortening of the wavelength compared to the linearized, analytic wave profile. 

Figure 5 shows waves generated in time for Fr = 0.4, 6 = 0.02. A steady state wave 
profile occurs at the pressure distribution at about t = 2.7. Of all cases considered, 
the steepest waves are generated by this case. Stokes [8] ,has shown that the limiting 
form of steady irrotational gravity waves is one with sharp crests containing an angle 
of 120”, that is, a maximum slope of 30”. At t = 2.4 in Fig. 5 at the first downstream 
crest a z 63” and /I r 73”, these angles being those shown in Fig. 7 for another case. 
As this crest approaches a steady state, one expects a to be more nearly equal to /3. 
These angles have been computed from numerical values for q in the immediate 
neighborhood of the crest peak and are only approximate, being rounded off to the 
nearest half degree. At t = 3.0, confidence in the accuracy of this crest is suspect 
because of the lack of resolution and the fact that a appears to be less than 60”, 
which is Stokes’ lower limiting value. A little after t = 3.6 the solution breaks up at 
this peak. The Stokes limiting value of 120” is an upper limit for irrotational flow 
and, as pointed out in [ 171, “ . . . it is very difficult, even in the laboratory, to generate 
a wave train that approaches this configuration. ... the waves tend to become very 
unsteady as the curvature at the crest increases, so that even a small perturbation 
results in breaking.” The experimental results of Salvesen [ 181 show that, for the case 
of a two-dimensional foil moving at constant speed below the free surface, the 
maximum slope and maximum wave elevation occurred at the first crest behind the 
foil and that, when breaking occurred, it started at this first crest. The largest slope 
(90” - a or /3) without breaking reported in [ 181 is approximately 25”. 

Figure 6 shows late time wave profiles for Fr = 0.4 with 6 = 0.01, 0.0125, 0.015, 
0.0175, and 0.02. Increasing 6 results in greater nonlinearity of the wave profiles and 
increased sharpening of the crest angles. Figure 7 shows the crest angle for Fr = 0.4, 
6 = 0.0175 at t = 3.3. 

Figure 8 shows time histories of wave resistance C,, time rate of work w, and 
time rate of energy dE/dt for Fr = 0.4 with 6 = 0.01, 0.0125, 0.015, 0.0175, and 0.02. 
C, and w are defined by Eqs. (16) and (15), respectively. dE/dt is the numerical 
time derivative of KE + PE, with KE and PE defined by Eqs. (13) and (14), respec- 
tively. Figure 8 shows that for all five cases Eq. (18) is satisfied after t = 2.0. For all 
five cases energy conservation, represented by Eq. (17), is pretty well satisfied up to 
t = 2.0. After t = 2.0, Eq. (17) is still reasonably satisfied except for the most 
nonlinear cases, in particular Fr = 0.4 with 6 = 0.0175 and 0.02 which develop very 
sharp crests in time and have already been discussed. There is not enough resolution 
in these crests to accurately compute the integrands for KE (Eq. (13)) and PE 
(Eq. (14)), and since dE/dt is a numerical finite difference in time of KE + PE, the 
numerical errors are compounded in computing dE/dt. This also most likely explains 
some of the scatter of dE/dt. 

Figure 9 shows a comparison between the steady state nonlinear numerical values 
of C, and steady state analytic, linearized C, for Fr = 0.4 with various 6’s. Although 
the difference between nonlinear and linear C, is small, the difference increases with 
increasing 6. Factors that could cause a greater difference include decreasing the 
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FIG. 8. Time histories of wave resistance C,, time rate of work @, and time rate of energy dE/dt 
for Fr =0.4 with S=O.Ol, 0.0125, 0.015, 0.0175, and 0.02. -, C,; ---, w; “‘, dE/dr; ---, linear, 
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FIG. 10. Comparison of wave profiles on two different mesh spacings for Fr = 0.4, 6 = 0.01 at 
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FIG. 12. Time sequence of waves generated for Fr = 0.45, 6 = 0.015. 
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depth h of the computational region in Fig la and changing the shape of the pressure 
distribution. 

Figures 10 and 11 show a comparison of wave profiles computed on two different 
grids for the cases Fr = 0.4, 6 = 0.01 at t = 3.0 and Fr = 0.4, 6 = 0.02 at t = 2.1. The 
finer grid represented by circles, which is used only for Figs. 10 and 11, is given by 
Eqs. (31) and (32) with Ax in the fourth and fifth lines of Eq. (31) replaced by 
Ax = 1.0/33.0 and Ax = 0.04, respectively. This finer grid will be referred to as Eq. 
(3 1) modified in Figs. 10 and 11. The comparisons show good agreement. This finer 
grid seems adequate enough for comparison. Using a grid, for example, twice as fine 
(i.e., 50 grid intervals to represent the pressure distribution and twice as fine spacing 
near the pressure distribution) seems unnecessary and would incur much greater 
computer cost. The first downstream crest in Fig. 11 has 01 z 66” and /I z 76” 
replacing the angles in Fig. 7. The upstream or bow wave portion of the wave profile 
for Fr = 0.4, 6 = 0.02 (which is the most extreme case considered in this paper) 
appears to require more than the very light filtering (Eq. (34)) that has been applied 
to it. This is also apparent in Fig. 6 for Fr = 0.4, 6 = 0.02. 

Figure 12 shows a time sequence of wave generation for Fr = 0.45, 6 = 0.015. This 
larger Froude number produces a wavelength longer than those of the Fr = 0.4 cases. 
Figure 13 shows a late time wave profile for this case. 

F 
1 t-34 

0.06 - - LINEAR, ANALYTIC, STEADY STATE 

‘k, 

-0.06 1 I I I I I 
2.0 26 3.6 4.6 6.6 6.6 

x 

FIG. 13. Late time wave profile for Fr = 0.45, 6 = 0.015 at t = 3.6. 
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In Figure 14 a time sequence of waves generated for Fr = 0.35, 6=0.0125 is 
shown. The numerical solution at t = 6.3 is steady through the first two downstream 
crests. The wavelength measured from peak to peak of these crests is 0.72. The 
wavelength of the analytic, linearized solution is 2rrFr’ z 0.7697. Thus the 
wavelength of the nonlinear numerical solution is 93.54% of the wavelength of the 
linearized solution, or 6.44% shorter. This is in good agreement with Salvesen’s third- 
order perturbation theory [9], which states that 

I. = 2nFr*( 1 - a2/Fr4), (38) 

where A is the nonlinear wavelength, a is the amplitude of the linearized solution far 
downstream, and 2nFr* is the wavelength of the linearized solution. With a = 0.0292 
for the present case, Eq. (38) predicts a nonlinear wavelength which is 94.32% of the 
wavelength for the linearized solution. 

The numerical solution at t = 6.3 clearly shows the nonlinear features of a 
sharpening of the crests and a broadening of the troughs compared to the linearized 
solution. This is true of all the cases computed in this paper. 

At t = 6.3 the first downstream crest has crest angles a g 71°, p z 72” and the 
second has a z 72*, /3 z 71”. This case of Fr = 0.35, 6 = 0.0125, along with Fr = 0.4, 
6 = 0.01, are the only cases of those considered in this paper that have been 
computed out to t = 6.3. It seems likely that these cases can be continued indefinitely 
but there is no reason to do so since the solution is already at steady state through 
the first two downstream wave crests. In the computation of the other cases which 
generate sharper crests the computations break down at the first downstream crest 
before the second crest is fully developed. This situation is in genereal agreement with 
the observations of physical experiments by Salvesen [18] and Banner and Philips 
[ 17) cited earlier. 

In Fig. 15 time histories of C,, IJ$‘, and dE/dt are shown for Fr = 0.45, 6 = 0.015 
and Fr = 0.35, 6 = 0.0125. The linear, analytic C, values are C, = 0.0017575 for 
Fr = 0.35, 6 = 0.0125 and C, = 0.0029502 for Fr = 0.45, 6 = 0.015. 

Computer times used on the Texas Instruments Advanced Scientific Computer (TI- 
AX) for each of the seven cases ranged from approximately 7 min, 8 set for 
Fr = 0.4, 6 = 0.02 to 11 min, 6 set for Fr = 0.35, 6 = 0.0125. The TI-ASC is approx- 
imately 25% faster than the IBM 360-91. The number of time steps per minute for 
each case with At = 0.03 ranged from approximately 23 time steps per minute for 
Fr = 0.4, 6 = 0.01 to approximately 18 time steps per minute for Fr = 0.4, 6 = 0.02. 
The average number of cycles per time step for all the cases was 3, with an average 
of 2 to 3 cycles per time step for Fr = 0.4, 6 = 0.01 and Fr = 0.35, 6 = 0.0125. The 
average number of Gauss-Seidel point iterations for the Laplace equation solution 
within each cycle was 1, with as many as 4 to 5 iterations required near t = 0. 
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FIG. 14. Time sequence of waves generated for Fr = 0.35, 6 = 0.0125. 
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5. CONCLUSIONS 

The method of lines has been shown to be useful in computing the time dependent 
generation of nonlinear waves. Wave crests with sharpness approaching that of the 
limiting Stokes wave have been computed. The nonlinear waves obtained show 
sharpening of the wave crests, broadening of the wave troughs, and shortening of the 
wavelengths compared to linear theory. Steady state wave resistance has been 
obtained. 
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